SENSITISING HUMAN MELANOMA CELLS TO TRAIL-INDUCED APOPTOSIS

Hsin-Yi Tseng

B. BiomedSci (Hons)

Thesis submitted in fulfilment of the requirements

for obtaining the degree of

DOCTOR OF PHILOSOPHY in

Surgical Science

School of Medicine and Public Health

University of Newcastle

December 2012

STATEMENT OF ORIGINALITY

The thesis contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best of my
knowledge and belief, contains no material previously published or written by another
person, except where due reference has been made in the text. I give consent to this
copy of my thesis, when deposited in the University Library**, being made available fo
loan and photocopying subject to the provisions of the Copyright Act 1968.
**Unless an Embargo has been approved for a determined period.

Hsin-Yi Tseng	

ACKNOWLEDGEMENT OF AUTHORSHIP

I hereby certify that the work embodied in this thesis conta	ains a published
paper/s/scholarly work of which I am a joint author. I have in	cluded as part of the
thesis a written statement, endorsed by each co-author, attesting	g to my contribution to
the joint publication/s/scholarly work.	
_	
	Hsin-Yi Tseng

ACKNOWLEDGEMENT OF COLLABORATION

I hereby certify that the work embodied in this thesis has be with other researchers. I have included as part of the the outlining the extent of collaboration, with whom and understanding the extent of collaboration.	esis a statement clearly
beginning of each research chapte	rs.
	Hsin-Yi Tseng

THESIS BY PUBLICATION

DEDICATION

I dedicate this thesis to all my family members and relatives, especially my parents Tai Yuan Tseng and Shu Hui Wang, my siblings, Hsin-Hui Tseng and Hsuan Chih Tseng, who have been so supportive throughout my PhD candidature. I also dedicate this thesis to my partner Kwang Hong Tay who keeps me going during depressed and stressful moments.

ACKNOWLEDGEMENTS

I would like to thank my supervisors Prof Peter Hersey and Prof Xu Dong Zhang for their support and guidance over the past few years. Their encouragement, constructive criticism, and incredible enthusiasm have provided the basis for these studies.

Special thanks to all my colleagues and friends in the Oncology and Immunology Unit, Li Hua Chen, Mengna Chi, Christine Cook, Amanda Croft, Li Dong, Margaret Farrelly, Chen Chen Jiang, Lei Jin, Fritz Lai, Chris Lavis, Chiann Wei Liew, Hao Liu, Zhengnan Shan, Kwang Hong Tay, Ralph Watts, Andrew Weir, David Wroblewski, Fan Yang, Fen Yang, Xiang Ming Yang, and Yan Ye.

I would also like to thank the Cancer Research Unit, especially Dr. Rick Thorne and Dr. Charles de Bock for their help in molecular biology studies.

Thanks must go to my housemates and taekwondo club buddies!

Finally, deepest thanks to my parents, Tai Yuan Tseng and Shu Hui Wang, and my siblings, Hsin-Hui Tseng and Hsuan Chih Tseng. Without their moral support, this thesis would not have been possible.

Publications Arising from Work in this Thesis

Tseng, H.Y., Jiang, C.C., Croft, A., Tay, K.H., Thorne, R.F., Yang, F., Liu, H., Hersey, P., and Zhang, X.D., *Contrasting Effects of Nutlin-3 on TRAIL- and Docetaxel-Induced Apoptosis due to Up-Regulation of TRAIL-R2 and Mcl-1 in Human Melanoma Cells.* Mol Cancer Ther, 2010. **9**(12): p. 3363-74

Tseng, H.Y., Chen, L. H., Ye, Y., Tay, K.H., Jiang, C.C., Guo, S.T., Jin, L., Hersey, P., and Zhang, X.D., *The Melanoma-Associated Antigen MAGE-D2 Suppresses TRAIL Receptor 2 and Protects against TRAIL-Induced Apoptosis in Human Melanoma Cells*. Carcinogenesis, 2012. (Accepted 31 May)

Liu, H., Jiang, C.C., Lavis, C.J., Croft, A., Dong, L., **Tseng, H.Y.**, Yang, F., Tay, K.H., Hersey, P., and Zhang, X.D., *2-Deoxy-D-glucose enhances TRAIL-induced apoptosis in human melanoma cells through XBP-1-mediated up-regulation of TRAIL-R2*. Mol Cancer, 2009. **8**: p. 122-38.

Other Publications during Candidature for PhD

Guo, S.T., Jiang, C.C., Wang, G.P., Li, Y.P., Wang, C.Y., Guo, X.Y., Yang R.H., Feng, Y., Wang, F.H., **Tseng, H.Y**., Thorne, R., Jin, L., and Zhang, X.D., *MicroRNA-497 Targets Insulin-Like Growth Factor I Receptor and Has a Tumour Suppressor Role in Human Colorectal Cancer*. Oncogene, 2012 (Accepted 23 April)

Tay, K.H., Jin, L., **Tseng, H.Y.**, Jiang C.C., Ye, Y., Thorne, R.F., Liu, T., Guo, S.T., Verills, N., Hersey, P., and Zhang, X.D., *Suppression of PP2A is Critical for Protection of Melanoma Cells upon Endoplasmic Reticulum Stress*. Cell Death Dis, 2012 (Accepted 9 May)

Yang, F., Tay, K.H., Dong, L., Thorne, R.F., Jiang, C.C., Yang, E., **Tseng, H.Y.**, Liu, H., Christopherson, R., Hersey, P., and Zhang, X.D., *Cystatin B inhibition of TRAIL-induced apoptosis is associated with the protection of FLIP(L) from degradation by the E3 ligase itch in human melanoma cells*. Cell Death Differ, 2010. **17**(8): p. 1354-67.

Ye, Y., Jin, L., Wilmott, J.S., Hu, W.L., Yosufi, B., Thorne, R.F., Liu, T., Rizos, H., Yan, X.G., Dong, L., Tay, K.H., **Tseng, H.Y.**, de Bock, C., Jiang, C.C., Wu, M., Zhang, L.J., Scolyer, R.A., Hersey, P., and Zhang, X.D., *Phosphatidylinositol 4,5-Bisphosphate 5-Phosphatase A Regulates PI3K/Akt Signaling and Has a Tumor Suppressive Role in Human Melanoma Cells*. (Under revision)

Zhan, Z.Z., Li, Q., Wu, P., Ye, Y., **Tseng, H.Y.**, Zhang, L., and Zhang, X.D., *Autophagy-Mediated HMGB1 Release Antagonizes Apoptosis of Gastric Cancer Cells Induced by Vincristine via Transcriptional Regulation of Mcl-1*. Autophagy, 2012. **8**(1): p.109-21.

Zhang, X.D., Hersey, P., Tay, K.H., **Tseng, H.Y.**, Jiang, C.C., and Dong, L., (2011). Adaptation of ER Stress as a Mechanism of Resistance of Melanoma to Treatment. In MY Cao (Ed). *Current Management of Malignant Melanoma*. (pp. 253-274), Croatia: InTech.

Conference Publications during Candidature for PhD

Tseng, H.Y., Zhang, X.D., Hersey, P. Nutlin-3 Enhances TRAIL-Induced Apoptosis in Human Melanoma Cells.

→ Poster Presentation (HMRI Cancer Research Program 2009)

Liu, H., Jiang, C.C., Lavis, C.J., **Tseng H.Y**., Yang, F., Tay. K.H., Hersey, P., Zhang, X.D., 2-Deoxy-D-glucose Enhances TRAIL-Induced Apoptosis in Human Melanoma Cells Through XBP-1-Mediated Up-Regulation of TRAIL-R2.

→ Poster Presentation (HMRI Cancer Research Program 2009)

Yang, F., Tay, K.H., Dong, L., Thorne, R.F., Jiang, C.C., Yang, E., **Tseng, H.Y.**, Liu, H., Christopherson, R., Hersey, P., and Zhang, X.D., *Cystatin B inhibition of TRAIL-induced apoptosis is associated with the protection of FLIP(L) from degradation by the E3 ligase itch in human melanoma cells.*

- → Poster Presentation (HMRI Cancer Research Program 2009)
- → Poster Presentation (SMR (Society for Melanoma Research) 2010)

Tay, K.H., Yang, F., **Tseng, H.Y**., Jiang, C.C., Liu, H., Hersey, P., Zhang, X.D. *Activating Protein 2α Repress Bid and Protects Human Melanoma Cells against TRAIL-Induced Apoptosis*.

- → Poster Presentation (HMRI Cancer Research Program 2009)
- → Poster Presentation (Lorne Cancer Conference 2010)

Tseng, H.Y., Liu, H., Tay, K.H., Jiang, C.C., Yang, F., Hersey, P., Zhang, X.D. *Nutlin-3 Sensitises Human Melanoma Cells to TRAIL-Induced Apoptosis by Up-regulation of TRAIL-R2 and Down-regulation of XIAP*.

- → Poster Presentation (Lorne Cancer Conference 2010)
- → Poster Presentation (10 Best Research Showcase, Faculty of Health, University of Newcastle 2010)

- **Tseng, H.Y**., Contrasting Effects of Nutlin-3 on TRAIL- and Docetaxel-Induced Apoptosis due to Up-regulation of TRAIL-R2 and Mcl-1 in Human Melanoma Cells.
 - → Oral Presentation (10 Best Research Showcase, Faculty of Health, University of Newcastle 2010)
 - → Oral Presentation (HMRI Cancer Research Program 2010)

Tseng, H.Y., Jiang, C.C., Croft, A., Tay, K.H., Thorne, R.F., Yang, F., Liu, H., Hersey, P., Zhang, X.D., *p53 Functions as a Double-Edged Sword for Responses of Human Melanoma Cells to Treatment.*

- → Poster Presentation (SMR 2010)
- → Poster Presentation (HMRI Cancer Research Program 2010)
- → Poster Presentation (Lorne Cancer Conference 2011)
- → Oral Presentation (FEBS Translational Cancer Research Course 2011)

Tay, K.H., Jiang, C.C., **Tseng, H.Y**., Hersey, P., Zhang, X.D., Rapid Negative Feedback Regulation of CHOP Contributes to Resistance of Melanoma Cells to ER stress-Induced apoptosis.

→ Poster Presentation (SMR 2010)

Tay, K.H., Jiang C.C., **Tseng, H.Y**., Hersey, P., Zhang, X.D. *Dysregulation of the CHOP-BIM Pathway contributes to Resistance of Melanoma Cells to ER Stress-Induced Apoptosis*.

→ Poster Presentation (Lorne Cancer Conference 2011)

Tseng, H.Y., Yan, Y., Hersey, P., Zhang X.D. *Phosphatidylinositol 4,5-Biphosphate 5-Phosphatase A (PIB5PA) Regulates PI3K/Akt Signalling in Human Melanoma Cells*.

→ Oral Presentation (Melanoma Institute Australia Research Retreat 2011)

Tseng, H.Y., Chen, L.H., Ye, Y., Tay, K.H., Jiang, C.C., Hersey P., Zhang, X.D. *The Cancer Testis Antigen MAGE-D2 Protects Human Melanoma Cells from TRAIL-Induced Apoptosis by Suppressing TRAIL-R2 Expression*.

- → Oral Presentation (AACBS (Australian Association of Chinese Biomedical Scientist) 2011)
- → Poster Presentation (HMRI Cancer Research Program 2011)

- → Poster Presentation (Lorne Cancer Conference 2012)
- → Poster Presentation (AACR (American Associated for Cancer Research) 2012)

Tay, K.H., Jin, L., **Tseng, H.Y.,** Jiang, C.C., Yan, Y., Thorne, R.F., Liu, T., Hersey, P., Zhang, X.D. *PP2A Signalling is Overridden by MEK-ERK Activity Leading to Suppression of Bim and Protection of Melanoma Cells Upon ER Stress*

- → Poster Presentation (Lorne Cancer Conference 2012)
- → Poster Presentation (AACR 2012)

TABLE OF CONTENTS

Statement of Originality	I
Acknowledgement of Authorship	II
Acknowledgement of Collaboration	III
Thesis by Publication	IV
Dedication	V
Acknowledgements	VI
Publications Arising from work in this Thesis	VII
Other Publications during Candidature for PhD	VIII
Conference Publications during Candidature for PhD	IX
Synopsis	XIX
List of Abbreviations	XXI
List of Tables	XXVI
List of Figures	XXVII
CHAPTER ONE: GENERAL INTRODUCTION	1
1.1 Melanoma	2
1.1.1 Overview	2
1.1.2 Prevalence and Incidence	2
1.1.3 Aetiology	5
1.1.3.1 UV Light in Melanoma Development	5
1.1.3.2 Genetic Factors	6
1.1.4 Pathobiology	7
1.1.5 Classification and Stages	9
1.1.5.1 Classification of Cutaneous Melanoma	9
1.1.5.2 Staging and Grading of Melanoma	9

1.1.6 Melanoma Treatments	13
1.2 Cell Death and Cell Survival	16
1.2.1 Overview	16
1.2.2 The Caspase Cascade	18
1.2.3 The Bcl-2 Protein Family	20
1.2.3.1 Overview and Roles of Individual Bcl-2 Family	
Proteins	20
1.2.3.2 Regulation of Bcl-2 Family Proteins	25
1.2.4 Survival Pathways	29
1.2.4.1 Mitogen-Activated Protein Kinase (MAPK) Pathway	29
1.2.4.1.1 MEK/ERK Signalling	29
1.2.4.1.2 JNK Signalling	31
1.2.4.1.3 p38-MAPK Signalling	32
1.2.4.2 PI3K/Akt Signalling Pathway	32
1.2.4.3 NF-κB Pathway	34
1.2.5 p53 and Apoptosis	35
1.2.5.1 Overview	35
1.2.5.2 p53 in Normal Melanocytes	36
1.2.5.3 p53-Induced Apoptosis	36
1.2.5.4 Reactivation of p53 in Cancer Therapy	37
1.3 Death Receptors and their Ligands	40
1.3.1 Overview	40
1.3.2 Family of Death Receptors	40
1.3.3 Fas and TRAIL-R Signalling	44

1.3.4 DR1/DR3/DR6 Signalling	46
1.3.5 TRAIL and Cancer	46
1.3.6 Clinical Development of Therapeutics Targeting DRs	51
1.3.6.1 Recombinant Human TRAIL (rhTRAIL)	52
1.3.6.2 Agonistic Antibodies against DRs	52
1.3.6.3 Use of rhTRAIL or Agonistic Antibodies in	
Combination with other Anti-cancer Agents	54
1.4 Melanoma-Associated Antigen	55
1.4.1 Overview	55
1.4.2 MAGEs Expression in Cancer	55
1.4.3 Epigenetic events in MAGEs activation	56
1.4.4 Functions of MAGES in Cell Cycle Progression and Apoptosis	56
1.5 Translational Regulation in Cancer	58
1.5.1 Overview	58
1.5.2 Stages of Protein Translation	60
1.5.2.1 Initiation	60
1.5.2.1.1 Cap-Dependent Translation	63
1.5.2.1.2 Cap-Independent Translation	64
1.5.2.2 Elongation	65
1.5.2.3 Termination	67
1.5.3 Translation and Apoptosis	67
1.5.4 Translation and Cancer	68

1.6 Aims of Study	71
CHAPTER TWO: MATERIALS AND METHODS	73
2.1 Cell Lines and Tissue Culture	74
2.1.1 Cell Lines	74
2.1.2 Establishment of Tumour Cell Lines	74
2.2 Antibodies and Recombinant Proteins	76
2.3 Flow Cytometry	81
2.3.1 Cell Surface Staining	81
2.3.2 Permeabilisation Staining	81
2.4 Apoptosis	82
2.4.1 Propidium Iodide (PI) Assay	82
2.4.2 Annexin V Staining	82
2.5 Mitochondrial Membrane Potential (ΔΨm)	84
2.6 Biochemical Analysis	85
2.6.1 Whole Cell Protein Extraction	85
2.6.2 Subcellular Fractionation	85
2.6.3 Immunoprecipitation	86
2.6.4 SDS-PAGE	86
2.6.5 Western Blot	87

2.6.6 Nascent Protein Synthesis Assay	87
2.6.7 Cell Viability Assay	88
2.6.7.1 MTS Assay	88
2.6.7.2 Colony Formation Assay	88
2.7 Molecular Biology Assays	90
2.7.1 RNA Extraction	90
2.7.2 Reverse Transcription	90
2.7.3 Real-Time Polymerase Chain Reaction (qPCR)	91
2.7.4 Polysome Profiling	91
2.7.5 Genomic DNA Purification	93
2.7.6 Polymerase Chain Reaction (PCR) Thermal Cycling	93
2.7.7 Restriction Enzyme Digestion	93
2.7.8 Agaorse Gel Electrophoresis	97
2.7.9 Vector Construction	97
2.7.10 Luciferase Reporter Assay	97
2.7.10.1 Dual-Luciferase® Reporter Assay	97
2.7.10.2 Dual-Glo® Luciferase Assay	99
2.8 Gene Transfection in Mammalian Cells	100
2.8.1 Transient Transfection of siRNA (Knockdown)	100
2.8.2 Transfection of DNA (Over-expression)	100
2.8.2.1 Transformation	100

2.8.2.2 Preparation of Plasmid DNA	102
2.8.2.3 Transfection Procedures	102
2.8.2.4 Selection and Validation of Transfection	102
2.8.3 Stable Transfection of shRNA (Knockdown)	103
CHAPTER THREE: CONTRASTING EFFECTS OF NUTLIN-3	104
ON TRAIL- AND DOCETAXEL-INDUCED APOPTOSIS DUE	
TO UP-REGULATION OF TRAIL-R2 AND MCL-1 IN HUMAN	
MELANOMA CELLS	
Acknowledgement of Collaboration	105
Abstract	106
Introduction	106
Materials and Methods	107
Results	108
Discussion	113
References	116
Supplementary	118
CHAPTER FOUR: THE MELANOMA-ASSOCIATED ANTIGEN	126
MAGE-D2 SUPPRESSES TRAIL RECEPTOR 2 AND PROTECTS	
AGAINST TRAIL-INDUCED APOPTOSIS IN HUMAN MELANOMA	
CELLS	
Acknowledgement of Collaboration	127
Abstract	129
Introduction	130
Materials and Methods	132
Results	137
Discussion	159
CHAPTER FIVE: 2-DEOXY-D-GLUCOSE ENHANCES TRAIL-	163
INDUCED APOPTOSIS IN HUMAN MELANOMA CELLS	

THROUGH XBP-1-MEDIATED UP-REGULATION OF TRAIL-R2

Acknowledgement of Collaboration	164
Abstract	165
Introduction	166
Results	166
Discussion	172
Materials and Methods	176
References	180
CHAPTER SIX: CAP-INDEPENDENT TRANSLATION CONTROLS	182
TRAIL-R2 EXPRESSION IN HUMAN MELANOMA	
Acknowledgement of Collaboration	183
Abstract	185
Introduction	186
Materials and Methods	188
Results	192
Discussion	208
CHAPTER SEVEN: GENERAL DISCUSSION AND CONCLUSION	212
General Discussion	213
Future Directions	219
REFERENCES	221
APPENDIX	244

SYNOPSIS

Melanoma is a skin cancer that remains a major public health problem in Australia because of its high incidence and the high morbidity and high mortality associated with the disease. Melanoma has proven largely resistant to many chemotherapeutic and biological agents. The introduction of a member of Tumour Necrosis Factor (TNF) family named TNF-Related Apoptosis Inducing Ligand (TRAIL) seemed to be a promising candidate due to its differential sensitivity to cancer and normal cells. Although many studies have reported approaches for sensitising cancer cells to TRAIL-induced apoptosis via up-regulation of its death receptors, TRAIL-R1 and TRAIL-R2, little was known about the regulation of these receptors. Previously, reports from our laboratory have shown that the sensitivity of melanoma cells to TRAIL-induced apoptosis is in general correlated with the levels of the cell surface expression of TRAIL-R2. Therefore, the general aim of this thesis was to understand the underlying mechanism by which TRAIL-R2 is regulated and to provide more information in identifying new therapeutic approaches for increasing the sensitivity of melanoma cells to apoptosis by TRAIL.

In Chapter Three, we identified the Murine Double Minute 2 (MDM2) antagonist, Nutlin-3, could enhance TRAIL-induced apoptosis as a result of p53-mediated upregulation of TRAIL-R2. Unexpectedly, Nutlin-3 up-regulated Myeloid-Cell Leukaemia Sequence 1 (Mcl-1) and inhibited apoptosis induced by the microtubule-targeting drug docetaxel. The contrasting effects of Nutlin-3 on TRAIL- and docetaxel-induced apoptosis demonstrated that Nutlin-3 may be a useful agent in improving the therapeutic efficacy of TRAIL in melanoma but could have unexpected adverse effects in combination with other chemotherapeutic drugs such as docetaxel.

The MAGE proteins have been demonstrated to impinge on cell survival, proliferation and apoptosis in cancer. Studies in Chapter Four demonstrated that one of the MAGE proteins, MAGE-D2, plays an important role in protecting melanoma cells from TRAIL-induced apoptosis by suppressing TRAIL-R2 expression. We determined that MAGE-D2 is generally expressed at high levels in melanoma cells compared to melanocytes. Although its inhibition by small interfering RNA (siRNA) did not cause

cell death, it rendered melanoma cells more sensitive to TRAIL-induced apoptosis which was associated with enhanced formation of Death-Inducing Signalling Complexes (DISC) and up-regulation of TRAIL-R2. Regulation of TRAIL-R2 by Melanoma-associated Antigen D2 (MAGE-D2) also appeared to be mediated by p53. We have shown that MAGE-D2 plays a role in repressing p53 expression in melanoma cells, as knockdown of MAGE-D2 resulted in up-regulation of p53 activity which in turn leads to the up-regulation of TRAIL-R2 protein expression. This up-regulation is not observed in p53-null or mutant p53 melanoma cells with MAGE-D2 knocked down, suggesting the dependency of p53 in regulating TRAIL-R2. Altogether, this suggests that targeting MAGE-D2 may be a useful strategy in improving the therapeutic efficacy of TRAIL in melanoma.

Although it is well-known that TRAIL-R2 can be up-regulated by p53, the study in Chapter Five showed that up-regulation of TRAIL-R2 by 2-Deoxy-D-Glucose (2-DG) was independent of p53. Instead, X-box Binding Protein 1 (XBP1) in the endoplasmic reticulum (ER) stress pathway was responsible for this up-regulation. Results in this chapter demonstrated that p53-null and mutant p53 melanoma cells displayed increased levels of TRAIL-R2 expression upon 2-DG treatment and that inhibiting p53 expression in p53 wild-type melanoma cell lines did not impact on the up-regulation of TRAIL-R2 by 2-DG.

In Chapter Six, we further demonstrated that conditional induction of p53 expression did not regulate TRAIL-R2 protein expression in melanoma cells and that other mechanisms may be involved. In particular, enhancing p53 levels in p53-inducible cell lines did not impact on the level of TRAIL-R2 expression or sensitise melanoma cells to TRAIL-induced apoptosis. Interestingly, we determined that Cisplatin (CDDP), a DNA-damaging drug that activates p53, could up-regulate TRAIL-R2 mRNA but did not up-regulate TRAIL-R2 protein levels. This evidence pointed to regulation by translational mechanisms. The results were further supported by studies in TRAIL-selected cells where it was found that exposure to TRAIL for a prolonged period of time resulted in the down-regulation of cell surface TRAIL-R2 but not its mRNA. The precise mechanism of translational control remains to be defined but appears to involve capindependent mechanisms.

List of Abbreviations

2-DG: 2-Deoxy-D-Glucose

2-ME: β-Mercaptoethanol

4E-BP: eIF4E-Binding Protein

5-FU: Fluorouracil

AJCC: American Joint Commission on Cancer

 α -MSH: α -Melanocyte-Stimulating Hormone

APP: Amyloid Precursor Protein

APS: Ammonium Persulphate

ATM: Ataxia Telangiectasia Mutated

BAD: Bcl-2-Antagonist of Cell Death

BAK: Bcl-2 Antagonist/Killer

BAX: Bcl-2-Associated X Protein

Bcl-2: B Cell Lymphoma Gene 2

B-CLL: B Chronic Lymphocytic Leukaemia

BH: Bcl-2 Homology

BID: BH3-Interacting-Domain Death Agonist

BIK: Bcl-2-Interacting Killer

BIM: Bcl-2-Interacting Mediator of Cell Death

BMF: Bcl-2 Modifying Factor

BOK: Bcl-2-Related Ovarian Killer

BSA: Bovine Serum Albumin

CARD: Caspase-Recruitment Domain

CCCP: Carboxyl Cyanide 3-Chlorophenylhydrazone

CDDP: Cisplatin

CDK: Cyclin Dependent Kinase

CDS: Coding Sequence

Chk: Checkpoint Kinase

CHX: Cycloheximide

CLL: Chronic Lymphocytic Leukaemia

CTL: Cytotoxic T Lymphocyte

DAXX: Death Domain-Associated Protein

DcR: Decoy Receptor

DD: Death Domain

DED: Death Effector Domain

DISC: Death-Inducing Signalling Complexes

DMEM: Dulbecco's Modified Eagle's Medium

DNA: Deoxyribonucleic Acid

DR: Death Receptor

E1: Ubiquitin-Activating Enzyme

E2: Ubiquitin-Conjugating Enzyme

E3: Ubiquitin Ligase

EDAR: Ectodysplasin A Receptor

EDTA: Ethylenediaminetetraacetic Acid

EGTA: Ethylene Glycol-bis(β-amino-ethyl ether)N, N'-tetraacetic Acid

EF: Elongation Factor

EGF: Epidermal Growth Factor

eIF: Eukaryotic Initiation Factor

ER: Endoplasmic Reticulum

ERK: Extracellular Signal-Regulated Kinase

FADD: Fas-Associated Death Domain

FCS: Foetal Calf Serum

FDA: Food and Drug Administration

FITC: Fluorescein Isothiocyanate

FLICE: FADD-like Interleukin 1β-Converting Enzyme

FLIP: FLICE-Inhibitory Protein

GDP: Guanosine Diphosphate

GTP: Guanosine Triphosphate

HDAC: Histone Deacetylase

Hrk: Harakiri

IAP: Inhibitor of Apoptosis

ICE: Interleukin-1-\(\beta\)-Converting Enzyme

IF: Initiation Factor

IFN: Interferon

IL: Interleukin

IRES: Internal Ribosome Entry Site

ITAF: IRES-Transacting Factors

kb: Kilobase

kDa: Kilodalton

JNK: c-Jun N-terminal Kinase

LARD: Lymphocyte-Associated Receptor of Death

LB: Lysogeny Broth

LT-α: Lymphotoxin-α

m⁷G: 7-Methyl Guanosine

MAGE: Melanoma-Associated Antigen

MAPK: Mitogen-Activating Protein Kinase

MC1R: Melanocortin Receptor 1

Mcl-1: Myeloid-Cell Leukaemia Sequence 1

MDM2: Mouse Double Minute 2

MEK: Mitogen-Activated Protein Kinase Kinase

MFI: Mean Fluorescence Intensity

MHD: MAGE Homology Domain

miR: MicroRNA

mRNA: Messenger RNA

MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium

NF-κB: Nuclear Factor-Kappa B

NGF: Nerve Growth Factor

NGFR: Nerve Growth Factor Receptor

NHPA: National Health Priority Area

NK: Natural Killer

NSCLC: Non-Small Cell Lung Cancer

OPG: Osteoprotegrin

PARP: Poly(ADP-Ribose) Polymerase

PBS: Phosphate Buffered Saline

PCD: Programmed Cell Death

PCR: Polymerase Chain Reaction

PD-1: Programmed Death Receptor 1

PDK: Phosphoinositide-Dependent Kinase

PE: R-Phycoerythrin

PI: Propidium Iodide

PI3K: Phosphatidylinositol 3-Kinase

PIB5PA: Phosphatidylinositol-4,5-biphosphate 5-Phosphatase A

PKA: Protein Kinase A

PP2A: Protein Phosphatase 2A

PTEN: Phosphatase and Tensin Homologue Deleted on Chromosome 10

PTM: Post-Translational Modification

PUMA: p53-Upregulated Modulator of Apoptosis

qPCR: Quantitative Polymerase Chain Reaction

RF: Release Factor

RGP: Radial Growth Phase

RHD: Rel Homology Domain

RIP: Receptor Interacting Protein

RNA: Ribonucleic Acid

ROS: Reactive Oxygen Species

rRNA: Ribosome RNA

RTK: Receptor Tyrosine Kinase

SAPK: Stress-Activated Protein Kinase

SDS-PAGE: Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis

shRNA: Short Hairpin RNA

siRNA: Small Interfering RNA

SNB: Sentinel Node Biopsy

SOC: Super-Optimal broth with Catabolite repression

SODD: Silencer of Death Domain

TAA: Tumour-Associated Antigens

TBE: Tris Borate EDTA

TBS: Tris-Buffered Saline

TBS-T: TBS-Tween 20

TEMED: N, N, N', N'-Tetramethylethylenediamine

TGA: Therapeutic Goods Administration

TM: Tunicamycin

TNF: Tumour Necrosis Factor

TNFR: Tumour Necrosis Factor Receptor

TNFRSF: Tumour Necrosis Factor Receptor Super Family

TRADD: TNFR-Associated Death Domain Protein

TRAIL: TNF-Related Apoptosis-Inducing Ligand

TRAMP: TNFR-Related Apoptosis-Mediating Protein

Trk: Tropomyosin-Related Kinase

tRNA: Transfer RNA

TPY: Threonine-Proline-Tyrosine

UTR: Untranslated Region

UV: Ultraviolet

VGP: Vertical Growth Phase

XBP1: X-box Binding Protein 1

XEDAR: X-linked Ectodermal Dysplasia Receptor

XIAP: X-linked Inhibitor of Apoptosis

LIST OF TABLES

Table 1.1	Comparative Melanoma Incidence Figures for Selected States and Countries Worldwide for the time period 1999-2003	4
Table 1.2	Clinico-histological Features of Four Main Types of Cutaneous Melanoma	10
Table 1.3	Anatomic Stage Groupings for Cutaneous Melanoma	12
Table 1.4	Features of Cells Undergoing Different Programmed Cell Death	17
Table 1.5	Death Receptors and their Ligands	42
Table 1.6	Genetic Code of Amino Acids	59
Table 1.7	List of ITAFs	66
Table 2.1	List of Antibodies	77
Table 2.2	List of Recombinant Proteins and Other Reagents	79
Table 2.3	List of Primers for Real-Time PCR	92
Table 2.4	PCR Reaction for GoTaq® Flexi DNA Polymerase and Expand High Fidelity PCR System	94
Table 2.5	PCR Cycling Conditions for GoTaq® Flexi DNA Polymerase and Expand High Fidelity PCR System	95
Table 2.6	Reaction for Restriction Digestion	96
Table 2.7	Ligation Reaction	98
Table 2.8	Cell Density in Respective Plates for Transfection	10

LIST OF FIGURES

Figure 1.1	Incidence of Melanoma of the Skin in Australia, 1982 to 2007	3
Figure 1.2	Progression of Melanoma	8
Figure 1.3	General Structure and the Activation of Mammalian Caspases	19
Figure 1.4	Classification of Bcl-2 Family Proteins	21
Figure 1.5	Models for BAX/BAK Activation by BH3-only Proteins	24
Figure 1.6	Classical MAPK Signalling	30
Figure 1.7	PI3K/Akt Signalling	33
Figure 1.8	Fas and TRAIL-R1/R2 Signalling	45
Figure 1.9	DR1/DR3/DR6 Signalling	47
Figure 1.10	Structure of a Typical Human Protein Coding mRNA	61
Figure 1.11	Illustration of Protein Translation Initiation	62
Figure 4.1	Knockdown of MAGE-D2 sensitises wild-type p53 melanoma cells to TRAIL-induced apoptosis.	138
Figure 4.2	siRNA knockdown of MAGE-D2 enhances TRAIL DISC formation	143
Figure 4.3	Knockdown of MAGE-D2 up-regulates TRAIL-R2	147
Figure 4.4	Up-regulation of TRAIL-R2 mediates enhancement to TRAIL-induced apoptosis by siRNA knockdown of MAGE-D2	151
Figure 4.5	Up-regulation of TRAIL-R2 by knockdown of MAGE-D2 is mediated by p53	154
Figure 4.6	Knockdown of MAGE-D2 up-regulates TRAIL-R2 and enhances TRAIL-induced apoptosis in fresh melanoma isolates.	157
Figure 4.7	Schematic Illustration of Mechanism on how melanoma cells could be sensitized to TRAIL-induced apoptosis by targeting MAGE-D2	161
Figure 6.1	Up-regulation of p53 by CDDP increased TRAIL-R2 transcripts but not TRAIL-R2 protein	193

Figure 6.2	CDDP triggered translation inhibition in Melanoma Cells	196
Figure 6.3	Conditional Over-expressing p53 in melanoma cells did not increase TRAIL-R2 expression	198
Figure 6.4	Rate-limiting translation initiator, eIF4Em does not play a major role in the regulation of TRAIL-R2 translation	199
Figure 6.5	$eIF2\alpha$ does not play a major role in regulating TRAIL-R2 translation	202
Figure 6.6	TRAIL-R2 is Regulated at Post-Transcriptional Level	206
Figure 6.7	4EGI-1 down-regulates Cyclin D1 expression	211